Publications


View SAEF Publications by Year

Theme 1 Climate Processes and Change

T.1.1 Antarctic Climate Dynamics

Climate modes & teleconnections

  1. Boschat, G., Purich, A., Rudeva, I. & Arblaster, J. Impact of Zonal and Meridional Atmospheric Flow on Surface Climate and Extremes in the Southern Hemisphere. Journal of Climate 36, 5041-5061 (2023). https://doi.org:10.1175/jcli-d-22-0251.1
  2. D’Olivo et al. Coral Sr/Ca-­SST reconstruction from Fiji extending to ~1370 CE reveals insights into the Interdecadal Pacific Oscillation. Science Advances 10, eado5107 (2024) https://doi.org:10.1126/sciadv.ado5107
  3. Freund, M. B. et al. Interannual ENSO diversity, transitions, and projected changes in observations and climate models. Environmental Research Letters 19 (2024). https://doi.org:10.1088/1748-9326/ad78db
  4. Gillett, Z. E., Hendon, H. H., Arblaster, J. M. & Lin, H. Sensitivity of the Southern Hemisphere Wintertime Teleconnection to the Location of ENSO Heating. Journal of Climate 36, 2497-2514 (2023). https://doi.org:10.1175/jcli-d-22-0159.1
  5. Heidemann, H., Cowan, T., Power, S. B. & Henley, B. J. Statistical relationships between the Interdecadal Pacific Oscillation and El Niño–Southern Oscillation. Climate Dynamics 62, 2499-2515 (2023). https://doi.org:10.1007/s00382-023-07035-8
  6. Lim, E. P. et al. Predictability of the 2020 Strong Vortex in the Antarctic Stratosphere and the Role of Ozone. Journal of Geophysical Research: Atmospheres 129 (2024). https://doi.org:10.1029/2024jd040820
  7. Power, S. et al. Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science 374, eaay9165 (2021). https://doi.org:10.1126/science.aay9165
  8. Roberts, J. L. et al. Segmented linear integral correlation Kernel ensemble reconstruction: A new method for climate reconstructions with applications to Holocene era proxies from an East Antarctic ice core. PLoS One 20, e0318825 (2025). https://doi.org:10.1371/journal.pone.0318825

Ocean-atmosphere-cryosphere interactions

  1. Cai, W. et al. Southern Ocean warming and its climatic impacts. Sci Bull (Beijing) 68, 946-960 (2023). https://doi.org:10.1016/j.scib.2023.03.049
  2. Cai, W. et al. Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes. Nature Climate Change 13, 235-239 (2023). https://doi.org:10.1038/s41558-023-01610-x
  3. Chen, J. J. et al. Reduced Deep Convection and Bottom Water Formation Due To Antarctic Meltwater in a Multi‐Model Ensemble. Geophysical Research Letters 50 (2023). https://doi.org:10.1029/2023gl106492
  4. Duffy, G. A., Montiel, F., Purich, A. & Fraser, C. I. Emerging long-term trends and interdecadal cycles in Antarctic polynyas. Proc Natl Acad Sci U S A 121, e2321595121 (2024). https://doi.org:10.1073/pnas.2321595121
  5. Eaves, S. R. et al. Coupled atmosphere-ocean response of the southwest Pacific to deglacial changes in Atlantic meridional overturning circulation. Earth and Planetary Science Letters 641 (2024). https://doi.org:10.1016/j.epsl.2024.118802
  6. McCormack, F. S. et al. The case for a Framework for UnderStanding Ice-Ocean iNteractions (FUSION) in the Antarctic-Southern Ocean system. Elem Sci Anth 12 (2024). https://doi.org:10.1525/elementa.2024.00036
  7. Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Communications Earth & Environment 4 (2023). https://doi.org:10.1038/s43247-023-00961-9
  8. Swart, N. C. et al. The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design. Geoscientific Model Development 16, 7289-7309 (2023). https://doi.org:10.5194/gmd-16-7289-2023

Extremes

  1. Falster, G. M., Wright, N. M., Abram, N. J., Ukkola, A. M. & Henley, B. J. Potential for historically unprecedented Australian droughts from natural variability and climate change. Hydrology and Earth System Sciences 28, 1383-1401 (2024). https://doi.org:10.5194/hess-28-1383-2024
  2. Fan, X., Peterson, T. J., Henley, B. J. & Arora, M. Groundwater Sensitivity to Climate Variations Across Australia. Water Resources Research 59 (2023). https://doi.org:10.1029/2023wr035036
  3. Grose, M. R. et al. A CMIP6-based multi-model downscaling ensemble to underpin climate change services in Australia. Climate Services 30 (2023). https://doi.org:10.1016/j.cliser.2023.100368
  4. Haque Mondol, M. A., Zhu, X., Dunkerley, D. & Henley, B. J. Technological drought: a new category of water scarcity. J Environ Manage 321, 115917 (2022). https://doi.org:10.1016/j.jenvman.2022.115917
  5. Heidemann, H. et al. Variability and long‐term change in Australian monsoon rainfall: A review. WIREs Climate Change 14 (2023). https://doi.org:10.1002/wcc.823
  6. McKay, R. C. et al. Can southern Australian rainfall decline be explained? A review of possible drivers. WIREs Climate Change 14 (2023). https://doi.org:10.1002/wcc.820
  7. Robbins, D. J. V. et al. Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires. Atmospheric Measurement Techniques 17, 3279-3302 (2024). https://doi.org:10.5194/amt-17-3279-2024

Mitigation

  1. Kirschbaum, M. U. F. et al. Is tree planting an effective strategy for climate change mitigation? Sci Total Environ 909, 168479 (2024). https://doi.org:10.1016/j.scitotenv.2023.168479

T1.2 Climate Projections

  1. Arzey, A. K. et al. Coral skeletal proxy records database for the Great Barrier Reef, Australia. Earth System Science Data 16, 4869-4930 (2024). https://doi.org:10.5194/essd-16-4869-2024
  2. Henley, B. J. et al. Highest ocean heat in four centuries places Great Barrier Reef in danger. Nature 632, 320-326 (2024). https://doi.org:10.1038/s41586-024-07672-x
  3. O’Connor, J. A., Henley, B. J., Brookhouse, M. T. & Allen, K. J. Ring-width and blue-light chronologies of Podocarpus lawrencei from southeastern mainland Australia reveal a regional climate signal. Climate of the Past 18, 2567-2581 (2022). https://doi.org:10.5194/cp-18-2567-2022

T1.3 Ice sheet history

Ice-bed processes

  1. Ehrenfeucht, S., Dow, C., McArthur, K., Morlighem, M. & McCormack, F. S. Antarctic Wide Subglacial Hydrology Modeling. Geophysical Research Letters 52 (2024). https://doi.org:10.1029/2024gl111386
  2. Jones, R. S., Miller, L. E. & Westoby, M. J. How can geomorphology facilitate a better understanding of glacier and ice sheet behaviour? Earth Surface Processes and Landforms 49, 3677-3683 (2024). https://doi.org:10.1002/esp.5932
  3. McCormack, F. S. et al. Fine‐Scale Geothermal Heat Flow in Antarctica Can Increase Simulated Subglacial Melt Estimates. Geophysical Research Letters 49 (2022). https://doi.org:10.1029/2022gl098539
  4. Purich, A. How the ocean melts Antarctic ice. Communications Earth & Environment 3 (2022). https://doi.org:10.1038/s43247-022-00471-0
  5. Reading, A. M. et al. Antarctic geothermal heat flow and its implications for tectonics and ice sheets. Nature Reviews Earth & Environment 3, 814-831 (2022). https://doi.org:10.1038/s43017-022-00348-y

Surface mass balance

  1. Macha, J. M. A. et al. Distinct Central and Eastern Pacific El Niño Influence on Antarctic Surface Mass Balance. Geophysical Research Letters 51 (2024). https://doi.org:10.1029/2024gl109423
  2. Saunderson, D., Mackintosh, A., McCormack, F., Jones, R. S. & Picard, G. Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021). The Cryosphere 16, 4553-4569 (2022). https://doi.org:10.5194/tc-16-4553-2022
  3. Saunderson, D., Mackintosh, A. N., McCormack, F. S., Jones, R. S. & van Dalum, C. T. How Does the Southern Annular Mode Control Surface Melt in East Antarctica? Geophysical Research Letters 51 (2024). https://doi.org:10.1029/2023gl105475

Historical change

  1. Chuter, S. J., Zammit-Mangion, A., Rougier, J., Dawson, G. & Bamber, J. L. Mass evolution of the Antarctic Peninsula over the last 2 decades from a joint Bayesian inversion. The Cryosphere 16, 1349-1367 (2022). https://doi.org:10.5194/tc-16-1349-2022
  2. Cooper, E.-L., Stevens, M. I., Jones, R. S. & Mackintosh, A. N. Can we use springtails to improve our understanding of Antarctic Ice Sheet history? — A case study from Dronning Maud Land. Quaternary Science Reviews 356 (2025). https://doi.org:10.1016/j.quascirev.2025.109297
  3. Jones, R. S. et al. Stability of the Antarctic Ice Sheet during the pre-industrial Holocene. Nature Reviews Earth & Environment 3, 500-515 (2022). https://doi.org:10.1038/s43017-022-00309-5
  4. Lau, S. C.Y. et al. Genomic evidence for West Antarctic Ice Sheet collapse during the Last Interglacial. Science 382, 1384-1389 (2023) https://doi.org/10.1126/science.ade0664
  5. Makcintosh, A. Thwaites Glacier and the bed beneath. Nature Geoscience 15, 687-688 (2022). https://doi.org:10.1038/s41561-022-01015-z
  6. Mas e Braga, M. et al. A thicker Antarctic ice stream during the mid-Pliocene warm period. Communications Earth & Environment 4 (2023). https://doi.org:10.1038/s43247-023-00983-3
  7. North, R. & Barrows, T. T. High-resolution elevation models of Larsen B glaciers extracted from 1960s imagery. Sci Rep 14, 14536 (2024). https://doi.org:10.1038/s41598-024-65081-6
  8. Stevens, M. I. & Mackintosh, A. N. Location, location, location: survival of Antarctic biota requires the best real estate. Biol Lett 19, 20220590 (2023). https://doi.org:10.1098/rsbl.2022.0590
  9. Stokes, C. R. et al. Response of the East Antarctic Ice Sheet to past and future climate change. Nature 608, 275-286 (2022). https://doi.org:10.1038/s41586-022-04946-0
  10. Stutz, J. et al. Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls. The Cryosphere 15, 5447-5471 (2021). https://doi.org:10.5194/tc-15-5447-2021

Aurora subglacial basin

  1. Bird, L. A., McCormack, F. S., Beckmann, J., Jones, R. S. & Mackintosh, A. N. Assessing the sensitivity of the Vanderford Glacier, East Antarctica, to basal melt and calving. The Cryosphere 19, 955-973 (2025). https://doi.org:10.5194/tc-19-955-2025
  2. McArthur, K., McCormack, F. S. & Dow, C. F. Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling. The Cryosphere 17, 4705-4727 (2023). https://doi.org:10.5194/tc-17-4705-2023
  3. McCormack, F. S. et al. Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica. The Cryosphere 17, 4549-4569 (2023). https://doi.org:10.5194/tc-17-4549-2023
  4. Pelle, T., Greenbaum, J. S., Ehrenfeucht, S., Dow, C. F. & McCormack, F. S. Subglacial Discharge Accelerates Dynamic Retreat of Aurora Subglacial Basin Outlet Glaciers, East Antarctica, Over the 21st Century. Journal of Geophysical Research: Earth Surface 129 (2024). https://doi.org:10.1029/2023jf007513

Other cryosphere

  1. Audet, A. C. et al. Correspondence Among Mid‐Latitude Glacier Equilibrium Line Altitudes, Atmospheric Temperatures, and Westerly Wind Fields. Geophysical Research Letters 49 (2022). https://doi.org:10.1029/2022gl099897
  2. Beckmann, J. & Winkelmann, R. Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet. The Cryosphere 17, 3083-3099 (2023). https://doi.org:10.5194/tc-17-3083-2023
  3. Tielidze, L. G., Iacob, G. & Holobâcă, I. H. Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach. Geosciences 14 (2024). https://doi.org:10.3390/geosciences14070178

T1.4 Precipitation Processes

  1. Alinejadtabrizi, T. et al. Contributions of the synoptic meteorology to the seasonal cloud condensation nuclei cycle over the Southern Ocean. Atmospheric Chemistry and Physics 25, 2631-2648 (2025). https://doi.org:10.5194/acp-25-2631-2025
  2. Alinejadtabrizi, T. et al. Wet deposition in shallow convection over the Southern Ocean. npj Climate and Atmospheric Science 7 (2024). https://doi.org:10.1038/s41612-024-00625-1
  3. Lang, F., Siems, S. T., Huang, Y., Alinejadtabrizi, T. & Ackermann, L. On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific. Atmospheric Chemistry and Physics 24, 1451-1466 (2024). https://doi.org:10.5194/acp-24-1451-2024
  4. Montoya Duque, E., Huang, Y., May, P. T. & Siems, S. T. An Evaluation of IMERG and ERA5 Quantitative Precipitation Estimates over the Southern Ocean Using Shipborne Observations. Journal of Applied Meteorology and Climatology 62, 1479-1495 (2023). https://doi.org:10.1175/jamc-d-23-0039.1
  5. Ramadoss, V. et al. An Evaluation of Cloud‐Precipitation Structures in Mixed‐Phase Stratocumuli Over the Southern Ocean in Kilometer‐Scale ICON Simulations During CAPRICORN. Journal of Geophysical Research: Atmospheres 129 (2024). https://doi.org:10.1029/2022jd038251
  6. Reid, K. J., Arblaster, J. M., Alexander, L. V. & Siems, S. T. Spurious Trends in High Latitude Southern Hemisphere Precipitation Observations. Geophysical Research Letters 51 (2024). https://doi.org:10.1029/2023gl106994
  7. Siems, S. T., Huang, Y. & Manton, M. J. Southern Ocean precipitation: Toward a process‐level understanding. WIREs Climate Change 13 (2022). https://doi.org:10.1002/wcc.800
  8. Truong, S. C. H. et al. Characteristics and Variability of Precipitation Across Different Sectors of an Extra‐Tropical Cyclone: A Case Study Over the High‐Latitudes of the Southern Ocean. Journal of Geophysical Research: Atmospheres 128 (2023). https://doi.org:10.1029/2023jd039013

Theme 2 Biodiversity Status and Trends

T2.1 Environmental Characterisation

Downscaling

  1. Zheng, X., Cressie, N., Clarke, D. A., McGeoch, M. A. & Zammit‐Mangion, A. Spatial‐statistical downscaling with uncertainty quantification in biodiversity modelling. Methods in Ecology and Evolution 16, 837-853 (2025). https://doi.org:10.1111/2041-210x.14505

Environmental characterisation

  1. Lembrechts, J. J. et al. Global maps of soil temperature. Glob Chang Biol 28, 3110-3144 (2022). https://doi.org:10.1111/gcb.16060
  2. Meredith, K. T., Saunders, K. M., McDonough, L. K. & McGeoch, M. Hydrochemical and isotopic baselines for understanding hydrological processes across Macquarie Island. Sci Rep 12, 21266 (2022). https://doi.org:10.1038/s41598-022-25115-3
  3. Toth, A. B. et al. A dataset of Antarctic ecosystems in ice-free lands: classification, descriptions, and maps. Sci Data 12, 133 (2025). https://doi.org:10.1038/s41597-025-04424-y

T2.2 Biodiversity Dynamics and Biogeography

Indigenous biodiversity

Theory

  1. Chown, S. L. Macrophysiology for decision‐making. Journal of Zoology 319, 1-22 (2022). https://doi.org:10.1111/jzo.13029
  2. Deane, D. C., Hui, C. & McGeoch, M. Mean landscape‐scale incidence of species in discrete habitats is patch size dependent. Global Ecology and Biogeography 33 (2024). https://doi.org:10.1111/geb.13805
  3. Deane, D. C., Hui, C. & McGeoch, M. Species that dominate spatial turnover can be of (almost) any abundance. Ecography (2025). https://doi.org:10.1111/ecog.07733
  4. Jeynes-Smith, C., Bode, M. & Araujo, R. P. Identifying and explaining resilience in ecological networks. Ecol Lett 27, e14484 (2024). https://doi.org:10.1111/ele.14484
  5. Kearney, M. R., Jusup, M., McGeoch, M. A., Kooijman, S. A. L. M. & Chown, S. L. Where do functional traits come from? The role of theory and models. Functional Ecology 35, 1385-1396 (2021). https://doi.org:10.1111/1365-2435.13829
  6. Latombe, G., Boittiaux, P., Hui, C. & McGeoch, M. A. A kernel integral method to remove biases in estimating trait turnover. Methods in Ecology and Evolution 15, 682-700 (2024). https://doi.org:10.1111/2041-210x.14246
  7. Pascal, L. V. et al. EEMtoolbox: A user‐friendly R package for flexible ensemble ecosystem modelling. Methods in Ecology and Evolution (2025). https://doi.org:10.1111/2041-210x.70032

Global

  1. Affleck, S. & McGeoch, M. A. Global Avian Functional Diversity Depends on the World’s Most Widespread and Distinct Birds. Ecol Lett 27, e14552 (2024). https://doi.org:10.1111/ele.14552
  2. Dehling, D. M. & Chown, S. L. Global increase in the endemism of birds from north to south. Nature Comms, in press. https://www.biorxiv.org/content/10.1101/2024.05.30.596746v1
  3. Potapov, A. M. et al. Global fine-resolution data on springtail abundance and community structure. Sci Data 11, 22 (2024). https://doi.org:10.1038/s41597-023-02784-x
  4. Potapov, A. M. et al. Globally invariant metabolism but density-diversity mismatch in springtails. Nat Commun 14, 674 (2023). https://doi.org:10.1038/s41467-023-36216-6
  5. Sandall, E. L. et al. A globally integrated structure of taxonomy to support biodiversity science and conservation. Trends Ecol Evol 38, 1143-1153 (2023). https://doi.org:10.1016/j.tree.2023.08.004

Continental

  1. Anderson, R. O., Chown, S. L. & Leihy, R. I. Continent‐wide analysis of moss diversity in Antarctica. Ecography 2025 (2024). https://doi.org:10.1111/ecog.07353
  2. Czechowski, P., de Lange, M., Knapp, M., Terauds, A. & Stevens, M. I. Antarctic biodiversity predictions through substrate qualities and environmental DNA. Frontiers in Ecology and the Environment 20, 550-557 (2022). https://doi.org:10.1002/fee.2560
  3. Patterson, C. R., Helmstedt, K. J., Terauds, A. & Shaw, J. D. A multidimensional assessment of Antarctic terrestrial biological data. Diversity and Distributions 31 (2024). https://doi.org:10.1111/ddi.13909
  4. Pertierra, L. R. et al. TerrANTALife 1.0 Biodiversity data checklist of known Antarctic terrestrial and freshwater life forms. Biodivers Data J 12, e106199 (2024).
  5. https://doi.org:10.3897/BDJ.12.e106199
  6. Pertierra, L. R. et al. Advances and shortfalls in knowledge of Antarctic terrestrial and freshwater biodiversity. Science 387, 609-615 (2025) https://doi.org/10.1126/science.adk2118
  7. Terauds, A. et al. The biodiversity of ice-free Antarctica database. Ecology 106, e70000 (2025). https://doi.org:10.1002/ecy.70000

Terrestrial

  1. Baird, H. P. et al. Fifty million years of beetle evolution along the Antarctic Polar Front. Proc Natl Acad Sci U S A 118 (2021). https://doi.org:10.1073/pnas.2017384118
  2. Collins, G. E. et al. Biogeography and Genetic Diversity of Terrestrial Mites in the Ross Sea Region, Antarctica. Genes (Basel) 14 (2023). https://doi.org:10.3390/genes14030606
  3. Short, K. A. et al. An ancient, Antarctic-specific species complex: large divergences between multiple Antarctic lineages of the tardigrade genus Mesobiotus. Mol Phylogenet Evol 170, 107429 (2022). https://doi.org:10.1016/j.ympev.2022.107429

Marine

  1. Lau, S. C. Y., Strugnell, J. M., Sands, C. J., Silva, C. N. S. & Wilson, N. G. Evolutionary innovations in Antarctic brittle stars linked to glacial refugia. Ecol Evol 11, 17428-17446 (2021). https://doi.org:10.1002/ece3.8376
  2. Lau, S. C. Y., Strugnell, J. M., Sands, C. J., Silva, C. N. S. & Wilson, N. G. Genomic insights of evolutionary divergence and life history innovations in Antarctic brittle stars. Mol Ecol 32, 3382-3402 (2023). https://doi.org:10.1111/mec.16951
  3. Lau, S. C. Y. et al. Circumpolar and Regional Seascape Drivers of Genomic Variation in a Southern Ocean Octopus. Mol Ecol 34, e17601 (2025). https://doi.org:10.1111/mec.17601
  4. Maroni, P. J. et al. One Antarctic slug to confuse them all: the underestimated diversity of. Invertebrate Systematics 36, 419-435 (2022). https://doi.org:10.1071/is21073
  5. Maroni, P. J. & Wilson, N. G. Multiple Doris “kerguelenensis” (Nudibranchia) species span the Antarctic Polar Front. Ecol Evol 12, e9333 (2022). https://doi.org:10.1002/ece3.9333
  6. Peralta-Serrano, M., Schrödl, M., Wilson, N. G. & Moles, J. Revealing hidden diversity and cryptic speciation in Antarctic marine gastropods (Heterobranchia: Cephalaspidea). Antarctic Science, 1-13 (2025). https://doi.org:10.1017/s0954102024000385

Biological invasions

Theory

  1. Buba, Y., Kiflawi, M., McGeoch, M. A. & Belmaker, J. Evaluating models for estimating introduction rates of alien species from discovery records. Global Ecology and Biogeography 33 (2024). https://doi.org:10.1111/geb.13859
  2. Clarke, D. A., Clarke, R. H. & McGeoch, M. A. How to Identify Priority Sites for Invasive Alien Species Policy and Management. Diversity and Distributions 31 (2025). https://doi.org:10.1111/ddi.13970
  3. Clarke, D. A. & McGeoch, M. A. Invasive alien insects represent a clear but variable threat to biodiversity. Curr Res Insect Sci 4, 100065 (2023). https://doi.org:10.1016/j.cris.2023.100065
  4. Henriksen, M. V. et al. Global indicators of the environmental impacts of invasive alien species and their information adequacy. Philos Trans R Soc Lond B Biol Sci 379, 20230323 (2024). https://doi.org:10.1098/rstb.2023.0323
  5. McGeoch, M. A. et al. Invasion trends: An interpretable measure of change is needed to support policy targets. Conservation Letters 16 (2023). https://doi.org:10.1111/conl.12981
  6. McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Philos Trans R Soc Lond B Biol Sci 379, 20230014 (2024). https://doi.org:10.1098/rstb.2023.0014
  7. Nunez, M. A. et al. Including a diverse set of voices to address biological invasions. Trends Ecol Evol 39, 409-412 (2024). https://doi.org:10.1016/j.tree.2024.02.009
  8. Onley, I. R., Cassey, P. & McGeoch, M. A. Biodiversity data sharing platforms are vital for the management and prevention of biological invasions. Biodiversity and Conservation 34, 2247-2257 (2025). https://doi.org:10.1007/s10531-025-03058-1
  9. Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat Ecol Evol 8, 1216-1223 (2024). https://doi.org:10.1038/s41559-024-02412-w
  10. Schwindt, E. et al. Overwhelming evidence galvanizes a global consensus on the need for action against Invasive Alien Species. Biological Invasions 26, 621-626 (2023). https://doi.org:10.1007/s10530-023-03209-x
  11. Vicente, J. R. et al. Existing indicators do not adequately monitor progress toward meeting invasive alien species targets. Conservation Letters 15 (2022). https://doi.org:10.1111/conl.12918

History

  1. Mairal, M. et al. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub-Antarctic. Mol Ecol 31, 1649-1665 (2022). https://doi.org:10.1111/mec.16045
  2. Mairal, M. et al. Multiple introductions, polyploidy and mixed reproductive strategies are linked to genetic diversity and structure in the most widespread invasive plant across Southern Ocean archipelagos. Mol Ecol 32, 756-771 (2023). https://doi.org:10.1111/mec.16809

Databases

  1. Leihy, R. I., Peake, L., Clarke, D. A., Chown, S. L. & McGeoch, M. A. Introduced and invasive alien species of Antarctica and the Southern Ocean Islands. Sci Data 10, 200 (2023). https://doi.org:10.1038/s41597-023-02113-2
  2. Pagad, S. et al. Country Compendium of the Global Register of Introduced and Invasive Species. Sci Data 9, 391 (2022). https://doi.org:10.1038/s41597-022-01514-z

Traits

  1. Chown, S. L. et al. Indigenous and introduced Collembola differ in desiccation resistance but not its plasticity in response to temperature. Curr Res Insect Sci 3, 100051 (2023). https://doi.org:10.1016/j.cris.2022.100051
  2. Chown, S. L. & McGeoch, M. A. Functional Trait Variation Along Animal Invasion Pathways. Annual Review of Ecology, Evolution, and Systematics 54, 151-170 (2023). https://doi.org:10.1146/annurev-ecolsys-102220-013423

Detections

  1. Clarke, L. J. et al. An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic. Management of Biological Invasions 14, 379–402 (2023). https://doi.org/10.3391/mbi.2023.14.3.01
  2. Onley, I. R., Houghton, M. J., Liu, W. P. A. & Shaw, J. First record of the invasive springtail Hypogastrura viatica occurring synanthropically in East Antarctica. Biological Invasions 27 (2025). https://doi.org:10.1007/s10530-024-03525-w
  3. Parvizi, E., McGaughran, A. & Stevens, M. I. Tracking the origins of the introduced terrestrial amphipod, Puhuruhuru patersoni, on sub-Antarctic Macquarie Island. New Zealand Journal of Zoology 51, 77-87 (2023). https://doi.org:10.1080/03014223.2023.2224580

Impacts

  1. Chown, S. L. et al. Invasive species impacts on sub-Antarctic Collembola support the Antarctic climate-diversity-invasion hypothesis. Soil Biology and Biochemistry 166 (2022). https://doi.org:10.1016/j.soilbio.2022.108579

Management

  1. Carter, Z. T. et al. Evaluating scent detection dogs as a tool to detect pathogenic Phytophthora species. Conservation Science and Practice 5 (2023). https://doi.org:10.1111/csp2.12997
  2. Leihy, R. I. et al. Antarctic Biosecurity Policy Effectively Manages the Rates of Alien Introductions. Earth’s Future 13 (2025). https://doi.org:10.1029/2024ef005405
  3. Onley, I. R. et al. Assessing ongoing risks and managing detections of non-native invertebrates in the Antarctic Region. NeoBiota 95, 133-147 (2024). https://doi.org:10.3897/neobiota.95.124706

T2.3 Climate Change Consequences

Theory

  1. Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecological Monographs 93 (2022). https://doi.org:10.1002/ecm.1553
  2. Madliger, C. L. et al. The second warning to humanity: contributions and solutions from conservation physiology. Conservation Physiology 9 (2021). https://doi.org:10.1093/conphys/coab038
  3. Svenning, J. C., McGeoch, M. A., Normand, S., Ordonez, A. & Riede, F. Navigating ecological novelty towards planetary stewardship: challenges and opportunities in biodiversity dynamics in a transforming biosphere. Philos Trans R Soc Lond B Biol Sci 379, 20230008 (2024). https://doi.org:10.1098/rstb.2023.0008

Predictions and methods

  1. Lee, J. R. et al. Islands in the ice: Potential impacts of habitat transformation on Antarctic biodiversity. Glob Chang Biol 28, 5865-5880 (2022). https://doi.org:10.1111/gcb.16331
  2. Strugnell, J. M. et al. Emerging biological archives can reveal ecological and climatic change in Antarctica. Glob Chang Biol 28, 6483-6508 (2022). https://doi.org:10.1111/gcb.16356

Tolerances

  1. Bahndorff, S. et al. Polar ectotherms more vulnerable to warming than expected. Trends in Ecology & Evolution, in press.
  2. Escribano-Alvarez, P., Pertierra, L. R., Martinez, B., Chown, S. L. & Olalla-Tarraga, M. A. Half a century of thermal tolerance studies in springtails (Collembola): A review of metrics, spatial and temporal trends. Curr Res Insect Sci 2, 100023 (2022). https://doi.org:10.1016/j.cris.2021.100023
  3. Perera-Castro, A. V., Waterman, M. J., Robinson, S. A. & Flexas, J. Limitations to photosynthesis in bryophytes: certainties and uncertainties regarding methodology. J Exp Bot 73, 4592-4604 (2022). https://doi.org:10.1093/jxb/erac189
  4. Renault, D. et al. The rising threat of climate change for arthropods from Earth’s cold regions: Taxonomic rather than native status drives species sensitivity. Glob Chang Biol 28, 5914-5927 (2022). https://doi.org:10.1111/gcb.16338
  5. Yin, H. et al. Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth Res 158, 151-169 (2023). https://doi.org:10.1007/s11120-023-01040-y

Thresholds and extremes

  1. Dee, L. E. et al. Quantifying disturbance effects on ecosystem services in a changing climate. Nat Ecol Evol 9, 436-447 (2025). https://doi.org:10.1038/s41559-024-02626-y
  2. Kubiszewski, I. et al. Cascading tipping points of Antarctica and the Southern Ocean. Ambio 54, 642-659 (2025). https://doi.org:10.1007/s13280-024-02101-9
  3. Lau, S. C. Y. & Strugnell, J. M. Is the Southern Ocean ecosystem primed for change or at the cliff edge? Glob Chang Biol 28, 4493-4494 (2022). https://doi.org:10.1111/gcb.16224
  4. Mills, E., Clark, G. F., Simpson, M. J., Baird, M. & Adams, M. P. A generalised sigmoid population growth model with energy dependence: Application to quantify the tipping point for Antarctic shallow seabed algae. Environmental Modelling & Software 188 (2025). https://doi.org:10.1016/j.envsoft.2025.106397
  5. Robinson, S. A. Climate change and extreme events are changing the biology of Polar Regions. Glob Chang Biol 28, 5861-5864 (2022). https://doi.org:10.1111/gcb.16309

Vegetation change

  1. Ficetola, G. F. et al. The development of terrestrial ecosystems emerging after glacier retreat. Nature 632, 336-342 (2024). https://doi.org:10.1038/s41586-024-07778-2
  2. Losapio, G., Lee, J.R., Fraser, C.I. et al.Impacts of deglaciation on biodiversity and ecosystem function.  Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00049-6
  3. Roland, T. P. et al. Sustained greening of the Antarctic Peninsula observed from satellites. Nature Geoscience 17, 1121-1126 (2024). https://doi.org:10.1038/s41561-024-01564-5
  4. van der Merwe, S. et al. Repeat photography reveals long‐term climate change impacts on sub‐Antarctic tundra vegetation. Journal of Vegetation Science 35 (2024). https://doi.org:10.1111/jvs.70002

Montreal protocol

  1. Barnes, P. W. et al. The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment. Glob Chang Biol 27, 5681-5683 (2021). https://doi.org:10.1111/gcb.15841
  2. Barnes, P. W. et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem Photobiol Sci 21, 275-301 (2022). https://doi.org:10.1007/s43630-022-00176-5
  3. Barnes, P. W. et al. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 22, 1049-1091 (2023). https://doi.org:10.1007/s43630-023-00376-7
  4. Jansen, M. A. K. et al. Environmental plastics in the context of UV radiation, climate change, and the Montreal Protocol. Glob Chang Biol 30, e17279 (2024). https://doi.org:10.1111/gcb.17279
  5. Jansen, M. A. K. et al. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 23, 629-650 (2024). https://doi.org:10.1007/s43630-024-00552-3
  6. Madronich, S. et al. Continuing benefits of the Montreal Protocol and protection of the stratospheric ozone layer for human health and the environment. Photochem Photobiol Sci 23, 1087-1115 (2024). https://doi.org:10.1007/s43630-024-00577-8
  7. Neale, P. J. et al. Environmental consequences of interacting effects of changes in stratospheric ozone, ultraviolet radiation, and climate: UNEP Environmental Effects Assessment Panel, Update 2024. Photochem Photobiol Sci 24, 357-392 (2025). https://doi.org:10.1007/s43630-025-00687-x
  8. Neale, R. E. et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem Photobiol Sci 20, 1-67 (2021). https://doi.org:10.1007/s43630-020-00001-x
  9. Robinson, S. A. The Antarctic ozone hole, ultraviolet radiation and bushfires. Antarctic Science 35, 61-63 (2023). https://doi.org:10.1017/s0954102023000081
  10. Robinson, S. A., Revell, L. E., Mackenzie, R. & Ossola, R. Extended ozone depletion and reduced snow and ice cover-Consequences for Antarctic biota. Glob Chang Biol 30, e17283 (2024). https://doi.org:10.1111/gcb.17283

T2.4 Antarctic Life’s Energy Budget

Biogeography

  1. Lebre, P. H. et al. Expanding Antarctic biogeography: microbial ecology of Antarctic island soils. Ecography 2023 (2023). https://doi.org:10.1111/ecog.06568
  2. Ni, G. et al. Functional basis of primary succession: Traits of the pioneer microbes. Environ Microbiol 25, 171-176 (2023). https://doi.org:10.1111/1462-2920.16266
  3. Tytgat, B. et al. Polar lake microbiomes have distinct evolutionary histories. Science Advances 9, eade7130 (2023). https://doi.org/10.1126/sciadv.ade7130
  4. Varliero, G. et al. Biogeographic survey of soil bacterial communities across Antarctica. Microbiome 12, 9 (2024). https://doi.org:10.1186/s40168-023-01719-3
  5. Varliero, G. et al. The use of different 16S rRNA gene variable regions in biogeographical studies. Environ Microbiol Rep 15, 216-228 (2023). https://doi.org:10.1111/1758-2229.13145
  6. Wood, J. L. et al. Rethinking CSR theory to incorporate microbial metabolic diversity and foraging traits. ISME J 17, 1793-1797 (2023). https://doi.org:10.1038/s41396-023-01486-x

Chemosynthesis

  1. Alexander, L. T. et al. Protein target highlights in CASP15: Analysis of models by structure providers. Proteins 91, 1571-1599 (2023). https://doi.org:10.1002/prot.26545
  2. Greening, C. et al. Minimal and hybrid hydrogenases are active from archaea. Cell 187, 3357-3372 e3319 (2024). https://doi.org:10.1016/j.cell.2024.05.032
  3. Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 20, 513-528 (2022). https://doi.org:10.1038/s41579-022-00724-x
  4. Greening, C., Islam, Z. F. & Bay, S. K. Hydrogen is a major lifeline for aerobic bacteria. Trends Microbiol 30, 330-337 (2022). https://doi.org:10.1016/j.tim.2021.08.004
  5. Greening, C., Kropp, A., Vincent, K. & Grinter, R. Developing high-affinity, oxygen-insensitive [NiFe]-hydrogenases as biocatalysts for energy conversion. Biochem Soc Trans 51, 1921-1933 (2023). https://doi.org:10.1042/BST20230120
  6. Grinter, R. et al. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 615, 541-547 (2023). https://doi.org:10.1038/s41586-023-05781-7
  7. Kropp, A. et al. Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria. Nat Chem Biol (2025). https://doi.org:10.1038/s41589-025-01836-0
  8. Lappan, R. et al. Molecular hydrogen in seawater supports growth of diverse marine bacteria. Nat Microbiol 8, 581-595 (2023). https://doi.org:10.1038/s41564-023-01322-0
  9. Martinez-Perez, C. et al. Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nat Commun 13, 117 (2022). https://doi.org:10.1038/s41467-021-27769-5
  10. Ni, G. et al. Nitrification in acidic and alkaline environments. Essays Biochem 67, 753-768 (2023). https://doi.org:10.1042/EBC20220194
  11. Ortiz, M. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci U S A 118 (2021). https://doi.org:10.1073/pnas.2025322118
  12. Ricci, F. & Greening, C. Chemosynthesis: a neglected foundation of marine ecology and biogeochemistry. Trends Microbiol 32, 631-639 (2024). https://doi.org:10.1016/j.tim.2023.11.013
  13. Valentin-Alvarado, L. E. et al. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat Commun 15, 6384 (2024). https://doi.org:10.1038/s41467-024-49872-z

Atmosphere

  1. Lappan, R. et al. The atmosphere: a transport medium or an active microbial ecosystem? ISME J 18 (2024). https://doi.org:10.1093/ismejo/wrae092

Theme 3 Supporting Environmental Stewardship

T3.1 Conservation Planning

Theory

  1. Cooke, S. J. et al. One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice. Conserv Physiol 9, coab009 (2021). https://doi.org:10.1093/conphys/coab009
  2. Lubiana Botelho, L., Jeynes-Smith, C., Vollert, S. A. & Bode, M. Calibrated Ecosystem Models Cannot Predict the Consequences of Conservation Management Decisions. Ecol Lett 28, e70034 (2025). https://doi.org:10.1111/ele.70034

Marine

  1. Bode, M. et al. Marine reserves contribute half of the larval supply to a coral reef fishery. Science Advances 11, eadt0216 (2025). https://doi.org/10.1126/sciadv.adt0216
  2. Brooks, C. M. et al. Protect global values of the Southern Ocean ecosystem. Science 378, 477-479. https://doi.org/10.1126/science.add9480

Terrestrial

  1. Burrows, J. L., Lee, J. R. & Wilson, K. A. Evaluating the conservation impact of Antarctica’s protected areas. Conserv Biol 37, e14059 (2023). https://doi.org:10.1111/cobi.14059
  2. Lee, J. R., Shaw, J. D., Ropert-Coudert, Y., Terauds, A. & Chown, S. L. Conservation features of the terrestrial Antarctic Peninsula. Ambio 53, 1037-1049 (2024). https://doi.org:10.1007/s13280-024-02009-4
  3. Phillips, L. M., Leihy, R. I. & Chown, S. L. Improving species-based area protection in Antarctica. Conserv Biol 36, e13885 (2022). https://doi.org:10.1111/cobi.13885

T3.2 Strategic Monitoring Frameworks

  1. Akinlotan, M. D. et al. Beyond expected values: Making environmental decisions using value of information analysis when measurement outcome matters. Ecological Indicators 160 (2024). https://doi.org:10.1016/j.ecolind.2024.111828
  2. Holden, M. H. et al. Why shouldn’t I collect more data? Reconciling disagreements between intuition and value of information analyses. Methods in Ecology and Evolution 15, 1580-1592 (2024). https://doi.org:10.1111/2041-210x.14391
  3. Holden, M. H. et al. Cost-benefit analysis of ecosystem modeling to support fisheries management. J Fish Biol 104, 1667-1674 (2024). https://doi.org:10.1111/jfb.15741

T3.3 Optimal Monitoring

  1. Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat Ecol Evol 7, 1947-1952 (2023). https://doi.org:10.1038/s41559-023-02171-0
  2. Leadley, P. et al. Achieving global biodiversity goals by 2050 requires urgent and integrated actions. One Earth 5, 597-603 (2022). https://doi.org:10.1016/j.oneear.2022.05.009
  3. Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol 20, e3001921 (2022). https://doi.org:10.1371/journal.pbio.3001921

T3.4 Visualising Geopolitics

ATS functioning

  1. Chown, S. L. et al. Science advice for international governance – An evidence-based perspective on the role of SCAR in the Antarctic Treaty System. Marine Policy 163 (2024). https://doi.org:10.1016/j.marpol.2024.106143
  2. Gardiner, N. B., Gilbert, N., Liggett, D. & Bode, M. Measuring the performance of Antarctic Treaty decision-making. Conserv Biol 39, e14349 (2025). https://doi.org:10.1111/cobi.14349

Ecosystem services

  1. Senigaglia, V. et al. Managing tourism in Antarctica: impacts, forecasts, and suitable economic instruments. Journal of Sustainable Tourism, 1-21 (2025). https://doi.org:10.1080/09669582.2025.2488958
  2. Stoeckl, N. et al. Governance challenges to protect globally important ecosystem services of the Antarctic and Southern Ocean. ICES Journal of Marine Science 82 (2025). https://doi.org:10.1093/icesjms/fsae163
  3. Stoeckl, N. et al. The value of Antarctic and Southern Ocean ecosystem services. Nature Reviews Earth & Environment 5, 153-155 (2024). https://doi.org:10.1038/s43017-024-00523-3

Theme 4 Integration

T4.1 Quantifying Uncertainty

  1. Gopalan, G., Zammit-Mangion, A. & McCormack, F. in Statistical Modeling Using Bayesian Latent Gaussian Models Chapter 2, 81-107 (2023). https://link.springer.com/book/10.1007/978-3-031-39791-2
  2. Vu, B. A., Gunawan, D. & Zammit-Mangion, A. R-VGAL: a sequential variational Bayes algorithm for generalised linear mixed models. Statistics and Computing 34 (2024). https://doi.org:10.1007/s11222-024-10422-8

T4.2 Sensing Platform Technology

  1. Debnath, D., Vanegas, F., Sandino, J., Hawary, A. F. & Gonzalez, F. A Review of UAV Path-Planning Algorithms and Obstacle Avoidance Methods for Remote Sensing Applications. Remote Sensing 16 (2024). https://doi.org:10.3390/rs16214019
  2. Galvez-Serna, J. et al. UAV4PE: An Open-Source Framework to Plan UAV Autonomous Missions for Planetary Exploration. Drones 6 (2022). https://doi.org:10.3390/drones6120391
  3. Lockhart, K. et al. Unmanned Aerial Vehicles for Real-Time Vegetation Monitoring in Antarctica: A Review. Remote Sensing 17 (2025). https://doi.org:10.3390/rs17020304
  4. Raniga, D. et al. Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI. Sensors (Basel) 24 (2024). https://doi.org:10.3390/s24041063
  5. Sandino, J. et al. A Green Fingerprint of Antarctica: Drones, Hyperspectral Imaging, and Machine Learning for Moss and Lichen Classification. Remote Sensing 15 (2023). https://doi.org:10.3390/rs15245658
  6. Turner, D. et al. Mapping water content in drying Antarctic moss communities using UAS‐borne SWIR imaging spectroscopy. Remote Sensing in Ecology and Conservation 10, 296-311 (2023). https://doi.org:10.1002/rse2.371

T4.3 Rapid Information Deployment

ATS

  1. Hughes, K. A., Lowther, A., Gilbert, N., Waluda, C. M. & Lee, J. R. Communicating the best available science to inform Antarctic policy and management: a practical introduction for researchers. Antarctic Science 35, 438-472 (2023). https://doi.org:10.1017/s095410202300024x
  2. Hughes, K. A. et al. Ant-ICON – ‘Integrated Science to Inform Antarctic and Southern Ocean Conservation’: a new SCAR Scientific Research Programme. Antarctic Science 34, 446-455 (2022). https://doi.org:10.1017/s0954102022000402

SDGs

  1. Lappan, R. et al. Towards integrated cross-sectoral surveillance of pathogens and antimicrobial resistance: Needs, approaches, and considerations for linking surveillance to action. Environ Int 192, 109046 (2024). https://doi.org:10.1016/j.envint.2024.109046

UNFCCC

  1. Smith, P. et al. Essential outcomes for COP26. Glob Chang Biol 28, 1-3 (2022). https://doi.org:10.1111/gcb.15926

T5 Workforce Topic Flexibility

Bangaladesh

  1. Mondol, M. A. H., Zhu, X., Dunkerley, D. & Henley, B. J. Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh. Agricultural Water Management 269 (2022). https://doi.org:10.1016/j.agwat.2022.107695
  2. Mondol, M. A. H., Zhu, X., Dunkerley, D. & Henley, B. J. Living with technological drought: Experience of smallholding farmers of Bangladesh. Environmental Development 50 (2024). https://doi.org:10.1016/j.envdev.2024.100985

Birds

  1. Barreto, E. et al. Macroevolution of the plant-hummingbird pollination system. Biol Rev Camb Philos Soc 99, 1831-1847 (2024). https://doi.org:10.1111/brv.13094
  2. Martins, L. P. et al. Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions. Nat Commun 13, 6943 (2022). https://doi.org:10.1038/s41467-022-34355-w
  3. Martins, L. P. et al. Birds optimize fruit size consumed near their geographic range limits. Science 385, 331–336 (2024). https://doi.org/10.1126/science.adj1856

Microbes

  1. Islam, Z. F., Greening, C. & Hu, H. W. Microbial hydrogen cycling in agricultural systems – plant beneficial or detrimental? Microb Biotechnol 16, 1623-1628 (2023). https://doi.org:10.1111/1751-7915.14300
  2. Li, H. & Greening, C. Termite-engineered microbial communities of termite nest structures: a new dimension to the extended phenotype. FEMS Microbiol Rev 46 (2022). https://doi.org:10.1093/femsre/fuac034

Miscellaneous

Hearn, L. R., Stevens, M. I. & Schwarz, M. P. The presence of a guard vicariously drives split sex ratios in a facultatively social bee. Biol Lett 19, 20220528 (2023). https://doi.org:10.1098/rsbl.2022.0528

Dehling, D. M. & Dehling, J. M. Elevated alpha diversity in disturbed sites obscures regional decline and homogenization of amphibian taxonomic, functional and phylogenetic diversity. Sci Rep 13, 1710 (2023). https://doi.org:10.1038/s41598-023-27946-0