View SAEF Publications by Year
Theme 1 Climate Processes and Change
T.1.1 Antarctic Climate Dynamics
Climate modes & teleconnections
- Boschat, G., Purich, A., Rudeva, I. & Arblaster, J. Impact of Zonal and Meridional Atmospheric Flow on Surface Climate and Extremes in the Southern Hemisphere. Journal of Climate 36, 5041-5061 (2023). https://doi.org:10.1175/jcli-d-22-0251.1
- D’Olivo et al. Coral Sr/Ca-SST reconstruction from Fiji extending to ~1370 CE reveals insights into the Interdecadal Pacific Oscillation. Science Advances 10, eado5107 (2024) https://doi.org:10.1126/sciadv.ado5107
- Freund, M. B. et al. Interannual ENSO diversity, transitions, and projected changes in observations and climate models. Environmental Research Letters 19 (2024). https://doi.org:10.1088/1748-9326/ad78db
- Gillett, Z. E., Hendon, H. H., Arblaster, J. M. & Lin, H. Sensitivity of the Southern Hemisphere Wintertime Teleconnection to the Location of ENSO Heating. Journal of Climate 36, 2497-2514 (2023). https://doi.org:10.1175/jcli-d-22-0159.1
- Heidemann, H., Cowan, T., Power, S. B. & Henley, B. J. Statistical relationships between the Interdecadal Pacific Oscillation and El Niño–Southern Oscillation. Climate Dynamics 62, 2499-2515 (2023). https://doi.org:10.1007/s00382-023-07035-8
- Lim, E. P. et al. Predictability of the 2020 Strong Vortex in the Antarctic Stratosphere and the Role of Ozone. Journal of Geophysical Research: Atmospheres 129 (2024). https://doi.org:10.1029/2024jd040820
- Power, S. et al. Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science 374, eaay9165 (2021). https://doi.org:10.1126/science.aay9165
- Roberts, J. L. et al. Segmented linear integral correlation Kernel ensemble reconstruction: A new method for climate reconstructions with applications to Holocene era proxies from an East Antarctic ice core. PLoS One 20, e0318825 (2025). https://doi.org:10.1371/journal.pone.0318825
Ocean-atmosphere-cryosphere interactions
- Cai, W. et al. Southern Ocean warming and its climatic impacts. Sci Bull (Beijing) 68, 946-960 (2023). https://doi.org:10.1016/j.scib.2023.03.049
- Cai, W. et al. Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes. Nature Climate Change 13, 235-239 (2023). https://doi.org:10.1038/s41558-023-01610-x
- Chen, J. J. et al. Reduced Deep Convection and Bottom Water Formation Due To Antarctic Meltwater in a Multi‐Model Ensemble. Geophysical Research Letters 50 (2023). https://doi.org:10.1029/2023gl106492
- Duffy, G. A., Montiel, F., Purich, A. & Fraser, C. I. Emerging long-term trends and interdecadal cycles in Antarctic polynyas. Proc Natl Acad Sci U S A 121, e2321595121 (2024). https://doi.org:10.1073/pnas.2321595121
- Eaves, S. R. et al. Coupled atmosphere-ocean response of the southwest Pacific to deglacial changes in Atlantic meridional overturning circulation. Earth and Planetary Science Letters 641 (2024). https://doi.org:10.1016/j.epsl.2024.118802
- McCormack, F. S. et al. The case for a Framework for UnderStanding Ice-Ocean iNteractions (FUSION) in the Antarctic-Southern Ocean system. Elem Sci Anth 12 (2024). https://doi.org:10.1525/elementa.2024.00036
- Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Communications Earth & Environment 4 (2023). https://doi.org:10.1038/s43247-023-00961-9
- Swart, N. C. et al. The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design. Geoscientific Model Development 16, 7289-7309 (2023). https://doi.org:10.5194/gmd-16-7289-2023
Extremes
- Falster, G. M., Wright, N. M., Abram, N. J., Ukkola, A. M. & Henley, B. J. Potential for historically unprecedented Australian droughts from natural variability and climate change. Hydrology and Earth System Sciences 28, 1383-1401 (2024). https://doi.org:10.5194/hess-28-1383-2024
- Fan, X., Peterson, T. J., Henley, B. J. & Arora, M. Groundwater Sensitivity to Climate Variations Across Australia. Water Resources Research 59 (2023). https://doi.org:10.1029/2023wr035036
- Grose, M. R. et al. A CMIP6-based multi-model downscaling ensemble to underpin climate change services in Australia. Climate Services 30 (2023). https://doi.org:10.1016/j.cliser.2023.100368
- Haque Mondol, M. A., Zhu, X., Dunkerley, D. & Henley, B. J. Technological drought: a new category of water scarcity. J Environ Manage 321, 115917 (2022). https://doi.org:10.1016/j.jenvman.2022.115917
- Heidemann, H. et al. Variability and long‐term change in Australian monsoon rainfall: A review. WIREs Climate Change 14 (2023). https://doi.org:10.1002/wcc.823
- McKay, R. C. et al. Can southern Australian rainfall decline be explained? A review of possible drivers. WIREs Climate Change 14 (2023). https://doi.org:10.1002/wcc.820
- Robbins, D. J. V. et al. Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires. Atmospheric Measurement Techniques 17, 3279-3302 (2024). https://doi.org:10.5194/amt-17-3279-2024
Mitigation
- Kirschbaum, M. U. F. et al. Is tree planting an effective strategy for climate change mitigation? Sci Total Environ 909, 168479 (2024). https://doi.org:10.1016/j.scitotenv.2023.168479
T1.2 Climate Projections
- Arzey, A. K. et al. Coral skeletal proxy records database for the Great Barrier Reef, Australia. Earth System Science Data 16, 4869-4930 (2024). https://doi.org:10.5194/essd-16-4869-2024
- Henley, B. J. et al. Highest ocean heat in four centuries places Great Barrier Reef in danger. Nature 632, 320-326 (2024). https://doi.org:10.1038/s41586-024-07672-x
- O’Connor, J. A., Henley, B. J., Brookhouse, M. T. & Allen, K. J. Ring-width and blue-light chronologies of Podocarpus lawrencei from southeastern mainland Australia reveal a regional climate signal. Climate of the Past 18, 2567-2581 (2022). https://doi.org:10.5194/cp-18-2567-2022
T1.3 Ice sheet history
Ice-bed processes
- Ehrenfeucht, S., Dow, C., McArthur, K., Morlighem, M. & McCormack, F. S. Antarctic Wide Subglacial Hydrology Modeling. Geophysical Research Letters 52 (2024). https://doi.org:10.1029/2024gl111386
- Jones, R. S., Miller, L. E. & Westoby, M. J. How can geomorphology facilitate a better understanding of glacier and ice sheet behaviour? Earth Surface Processes and Landforms 49, 3677-3683 (2024). https://doi.org:10.1002/esp.5932
- McCormack, F. S. et al. Fine‐Scale Geothermal Heat Flow in Antarctica Can Increase Simulated Subglacial Melt Estimates. Geophysical Research Letters 49 (2022). https://doi.org:10.1029/2022gl098539
- Purich, A. How the ocean melts Antarctic ice. Communications Earth & Environment 3 (2022). https://doi.org:10.1038/s43247-022-00471-0
- Reading, A. M. et al. Antarctic geothermal heat flow and its implications for tectonics and ice sheets. Nature Reviews Earth & Environment 3, 814-831 (2022). https://doi.org:10.1038/s43017-022-00348-y
Surface mass balance
- Macha, J. M. A. et al. Distinct Central and Eastern Pacific El Niño Influence on Antarctic Surface Mass Balance. Geophysical Research Letters 51 (2024). https://doi.org:10.1029/2024gl109423
- Saunderson, D., Mackintosh, A., McCormack, F., Jones, R. S. & Picard, G. Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021). The Cryosphere 16, 4553-4569 (2022). https://doi.org:10.5194/tc-16-4553-2022
- Saunderson, D., Mackintosh, A. N., McCormack, F. S., Jones, R. S. & van Dalum, C. T. How Does the Southern Annular Mode Control Surface Melt in East Antarctica? Geophysical Research Letters 51 (2024). https://doi.org:10.1029/2023gl105475
Historical change
- Chuter, S. J., Zammit-Mangion, A., Rougier, J., Dawson, G. & Bamber, J. L. Mass evolution of the Antarctic Peninsula over the last 2 decades from a joint Bayesian inversion. The Cryosphere 16, 1349-1367 (2022). https://doi.org:10.5194/tc-16-1349-2022
- Cooper, E.-L., Stevens, M. I., Jones, R. S. & Mackintosh, A. N. Can we use springtails to improve our understanding of Antarctic Ice Sheet history? — A case study from Dronning Maud Land. Quaternary Science Reviews 356 (2025). https://doi.org:10.1016/j.quascirev.2025.109297
- Jones, R. S. et al. Stability of the Antarctic Ice Sheet during the pre-industrial Holocene. Nature Reviews Earth & Environment 3, 500-515 (2022). https://doi.org:10.1038/s43017-022-00309-5
- Lau, S. C.Y. et al. Genomic evidence for West Antarctic Ice Sheet collapse during the Last Interglacial. Science 382, 1384-1389 (2023) https://doi.org/10.1126/science.ade0664
- Makcintosh, A. Thwaites Glacier and the bed beneath. Nature Geoscience 15, 687-688 (2022). https://doi.org:10.1038/s41561-022-01015-z
- Mas e Braga, M. et al. A thicker Antarctic ice stream during the mid-Pliocene warm period. Communications Earth & Environment 4 (2023). https://doi.org:10.1038/s43247-023-00983-3
- North, R. & Barrows, T. T. High-resolution elevation models of Larsen B glaciers extracted from 1960s imagery. Sci Rep 14, 14536 (2024). https://doi.org:10.1038/s41598-024-65081-6
- Stevens, M. I. & Mackintosh, A. N. Location, location, location: survival of Antarctic biota requires the best real estate. Biol Lett 19, 20220590 (2023). https://doi.org:10.1098/rsbl.2022.0590
- Stokes, C. R. et al. Response of the East Antarctic Ice Sheet to past and future climate change. Nature 608, 275-286 (2022). https://doi.org:10.1038/s41586-022-04946-0
- Stutz, J. et al. Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls. The Cryosphere 15, 5447-5471 (2021). https://doi.org:10.5194/tc-15-5447-2021
Aurora subglacial basin
- Bird, L. A., McCormack, F. S., Beckmann, J., Jones, R. S. & Mackintosh, A. N. Assessing the sensitivity of the Vanderford Glacier, East Antarctica, to basal melt and calving. The Cryosphere 19, 955-973 (2025). https://doi.org:10.5194/tc-19-955-2025
- McArthur, K., McCormack, F. S. & Dow, C. F. Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling. The Cryosphere 17, 4705-4727 (2023). https://doi.org:10.5194/tc-17-4705-2023
- McCormack, F. S. et al. Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica. The Cryosphere 17, 4549-4569 (2023). https://doi.org:10.5194/tc-17-4549-2023
- Pelle, T., Greenbaum, J. S., Ehrenfeucht, S., Dow, C. F. & McCormack, F. S. Subglacial Discharge Accelerates Dynamic Retreat of Aurora Subglacial Basin Outlet Glaciers, East Antarctica, Over the 21st Century. Journal of Geophysical Research: Earth Surface 129 (2024). https://doi.org:10.1029/2023jf007513
Other cryosphere
- Audet, A. C. et al. Correspondence Among Mid‐Latitude Glacier Equilibrium Line Altitudes, Atmospheric Temperatures, and Westerly Wind Fields. Geophysical Research Letters 49 (2022). https://doi.org:10.1029/2022gl099897
- Beckmann, J. & Winkelmann, R. Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet. The Cryosphere 17, 3083-3099 (2023). https://doi.org:10.5194/tc-17-3083-2023
- Tielidze, L. G., Iacob, G. & Holobâcă, I. H. Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach. Geosciences 14 (2024). https://doi.org:10.3390/geosciences14070178
T1.4 Precipitation Processes
- Alinejadtabrizi, T. et al. Contributions of the synoptic meteorology to the seasonal cloud condensation nuclei cycle over the Southern Ocean. Atmospheric Chemistry and Physics 25, 2631-2648 (2025). https://doi.org:10.5194/acp-25-2631-2025
- Alinejadtabrizi, T. et al. Wet deposition in shallow convection over the Southern Ocean. npj Climate and Atmospheric Science 7 (2024). https://doi.org:10.1038/s41612-024-00625-1
- Lang, F., Siems, S. T., Huang, Y., Alinejadtabrizi, T. & Ackermann, L. On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific. Atmospheric Chemistry and Physics 24, 1451-1466 (2024). https://doi.org:10.5194/acp-24-1451-2024
- Montoya Duque, E., Huang, Y., May, P. T. & Siems, S. T. An Evaluation of IMERG and ERA5 Quantitative Precipitation Estimates over the Southern Ocean Using Shipborne Observations. Journal of Applied Meteorology and Climatology 62, 1479-1495 (2023). https://doi.org:10.1175/jamc-d-23-0039.1
- Ramadoss, V. et al. An Evaluation of Cloud‐Precipitation Structures in Mixed‐Phase Stratocumuli Over the Southern Ocean in Kilometer‐Scale ICON Simulations During CAPRICORN. Journal of Geophysical Research: Atmospheres 129 (2024). https://doi.org:10.1029/2022jd038251
- Reid, K. J., Arblaster, J. M., Alexander, L. V. & Siems, S. T. Spurious Trends in High Latitude Southern Hemisphere Precipitation Observations. Geophysical Research Letters 51 (2024). https://doi.org:10.1029/2023gl106994
- Siems, S. T., Huang, Y. & Manton, M. J. Southern Ocean precipitation: Toward a process‐level understanding. WIREs Climate Change 13 (2022). https://doi.org:10.1002/wcc.800
- Truong, S. C. H. et al. Characteristics and Variability of Precipitation Across Different Sectors of an Extra‐Tropical Cyclone: A Case Study Over the High‐Latitudes of the Southern Ocean. Journal of Geophysical Research: Atmospheres 128 (2023). https://doi.org:10.1029/2023jd039013
Theme 2 Biodiversity Status and Trends
T2.1 Environmental Characterisation
Downscaling
- Zheng, X., Cressie, N., Clarke, D. A., McGeoch, M. A. & Zammit‐Mangion, A. Spatial‐statistical downscaling with uncertainty quantification in biodiversity modelling. Methods in Ecology and Evolution 16, 837-853 (2025). https://doi.org:10.1111/2041-210x.14505
Environmental characterisation
- Lembrechts, J. J. et al. Global maps of soil temperature. Glob Chang Biol 28, 3110-3144 (2022). https://doi.org:10.1111/gcb.16060
- Meredith, K. T., Saunders, K. M., McDonough, L. K. & McGeoch, M. Hydrochemical and isotopic baselines for understanding hydrological processes across Macquarie Island. Sci Rep 12, 21266 (2022). https://doi.org:10.1038/s41598-022-25115-3
- Toth, A. B. et al. A dataset of Antarctic ecosystems in ice-free lands: classification, descriptions, and maps. Sci Data 12, 133 (2025). https://doi.org:10.1038/s41597-025-04424-y
T2.2 Biodiversity Dynamics and Biogeography
Indigenous biodiversity
Theory
- Chown, S. L. Macrophysiology for decision‐making. Journal of Zoology 319, 1-22 (2022). https://doi.org:10.1111/jzo.13029
- Deane, D. C., Hui, C. & McGeoch, M. Mean landscape‐scale incidence of species in discrete habitats is patch size dependent. Global Ecology and Biogeography 33 (2024). https://doi.org:10.1111/geb.13805
- Deane, D. C., Hui, C. & McGeoch, M. Species that dominate spatial turnover can be of (almost) any abundance. Ecography (2025). https://doi.org:10.1111/ecog.07733
- Jeynes-Smith, C., Bode, M. & Araujo, R. P. Identifying and explaining resilience in ecological networks. Ecol Lett 27, e14484 (2024). https://doi.org:10.1111/ele.14484
- Kearney, M. R., Jusup, M., McGeoch, M. A., Kooijman, S. A. L. M. & Chown, S. L. Where do functional traits come from? The role of theory and models. Functional Ecology 35, 1385-1396 (2021). https://doi.org:10.1111/1365-2435.13829
- Latombe, G., Boittiaux, P., Hui, C. & McGeoch, M. A. A kernel integral method to remove biases in estimating trait turnover. Methods in Ecology and Evolution 15, 682-700 (2024). https://doi.org:10.1111/2041-210x.14246
- Pascal, L. V. et al. EEMtoolbox: A user‐friendly R package for flexible ensemble ecosystem modelling. Methods in Ecology and Evolution (2025). https://doi.org:10.1111/2041-210x.70032
Global
- Affleck, S. & McGeoch, M. A. Global Avian Functional Diversity Depends on the World’s Most Widespread and Distinct Birds. Ecol Lett 27, e14552 (2024). https://doi.org:10.1111/ele.14552
- Dehling, D. M. & Chown, S. L. Global increase in the endemism of birds from north to south. Nature Comms, in press. https://www.biorxiv.org/content/10.1101/2024.05.30.596746v1
- Potapov, A. M. et al. Global fine-resolution data on springtail abundance and community structure. Sci Data 11, 22 (2024). https://doi.org:10.1038/s41597-023-02784-x
- Potapov, A. M. et al. Globally invariant metabolism but density-diversity mismatch in springtails. Nat Commun 14, 674 (2023). https://doi.org:10.1038/s41467-023-36216-6
- Sandall, E. L. et al. A globally integrated structure of taxonomy to support biodiversity science and conservation. Trends Ecol Evol 38, 1143-1153 (2023). https://doi.org:10.1016/j.tree.2023.08.004
Continental
- Anderson, R. O., Chown, S. L. & Leihy, R. I. Continent‐wide analysis of moss diversity in Antarctica. Ecography 2025 (2024). https://doi.org:10.1111/ecog.07353
- Czechowski, P., de Lange, M., Knapp, M., Terauds, A. & Stevens, M. I. Antarctic biodiversity predictions through substrate qualities and environmental DNA. Frontiers in Ecology and the Environment 20, 550-557 (2022). https://doi.org:10.1002/fee.2560
- Patterson, C. R., Helmstedt, K. J., Terauds, A. & Shaw, J. D. A multidimensional assessment of Antarctic terrestrial biological data. Diversity and Distributions 31 (2024). https://doi.org:10.1111/ddi.13909
- Pertierra, L. R. et al. TerrANTALife 1.0 Biodiversity data checklist of known Antarctic terrestrial and freshwater life forms. Biodivers Data J 12, e106199 (2024).
- https://doi.org:10.3897/BDJ.12.e106199
- Pertierra, L. R. et al. Advances and shortfalls in knowledge of Antarctic terrestrial and freshwater biodiversity. Science 387, 609-615 (2025) https://doi.org/10.1126/science.adk2118
- Terauds, A. et al. The biodiversity of ice-free Antarctica database. Ecology 106, e70000 (2025). https://doi.org:10.1002/ecy.70000
Terrestrial
- Baird, H. P. et al. Fifty million years of beetle evolution along the Antarctic Polar Front. Proc Natl Acad Sci U S A 118 (2021). https://doi.org:10.1073/pnas.2017384118
- Collins, G. E. et al. Biogeography and Genetic Diversity of Terrestrial Mites in the Ross Sea Region, Antarctica. Genes (Basel) 14 (2023). https://doi.org:10.3390/genes14030606
- Short, K. A. et al. An ancient, Antarctic-specific species complex: large divergences between multiple Antarctic lineages of the tardigrade genus Mesobiotus. Mol Phylogenet Evol 170, 107429 (2022). https://doi.org:10.1016/j.ympev.2022.107429
Marine
- Lau, S. C. Y., Strugnell, J. M., Sands, C. J., Silva, C. N. S. & Wilson, N. G. Evolutionary innovations in Antarctic brittle stars linked to glacial refugia. Ecol Evol 11, 17428-17446 (2021). https://doi.org:10.1002/ece3.8376
- Lau, S. C. Y., Strugnell, J. M., Sands, C. J., Silva, C. N. S. & Wilson, N. G. Genomic insights of evolutionary divergence and life history innovations in Antarctic brittle stars. Mol Ecol 32, 3382-3402 (2023). https://doi.org:10.1111/mec.16951
- Lau, S. C. Y. et al. Circumpolar and Regional Seascape Drivers of Genomic Variation in a Southern Ocean Octopus. Mol Ecol 34, e17601 (2025). https://doi.org:10.1111/mec.17601
- Maroni, P. J. et al. One Antarctic slug to confuse them all: the underestimated diversity of. Invertebrate Systematics 36, 419-435 (2022). https://doi.org:10.1071/is21073
- Maroni, P. J. & Wilson, N. G. Multiple Doris “kerguelenensis” (Nudibranchia) species span the Antarctic Polar Front. Ecol Evol 12, e9333 (2022). https://doi.org:10.1002/ece3.9333
- Peralta-Serrano, M., Schrödl, M., Wilson, N. G. & Moles, J. Revealing hidden diversity and cryptic speciation in Antarctic marine gastropods (Heterobranchia: Cephalaspidea). Antarctic Science, 1-13 (2025). https://doi.org:10.1017/s0954102024000385
Biological invasions
Theory
- Buba, Y., Kiflawi, M., McGeoch, M. A. & Belmaker, J. Evaluating models for estimating introduction rates of alien species from discovery records. Global Ecology and Biogeography 33 (2024). https://doi.org:10.1111/geb.13859
- Clarke, D. A., Clarke, R. H. & McGeoch, M. A. How to Identify Priority Sites for Invasive Alien Species Policy and Management. Diversity and Distributions 31 (2025). https://doi.org:10.1111/ddi.13970
- Clarke, D. A. & McGeoch, M. A. Invasive alien insects represent a clear but variable threat to biodiversity. Curr Res Insect Sci 4, 100065 (2023). https://doi.org:10.1016/j.cris.2023.100065
- Henriksen, M. V. et al. Global indicators of the environmental impacts of invasive alien species and their information adequacy. Philos Trans R Soc Lond B Biol Sci 379, 20230323 (2024). https://doi.org:10.1098/rstb.2023.0323
- McGeoch, M. A. et al. Invasion trends: An interpretable measure of change is needed to support policy targets. Conservation Letters 16 (2023). https://doi.org:10.1111/conl.12981
- McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Philos Trans R Soc Lond B Biol Sci 379, 20230014 (2024). https://doi.org:10.1098/rstb.2023.0014
- Nunez, M. A. et al. Including a diverse set of voices to address biological invasions. Trends Ecol Evol 39, 409-412 (2024). https://doi.org:10.1016/j.tree.2024.02.009
- Onley, I. R., Cassey, P. & McGeoch, M. A. Biodiversity data sharing platforms are vital for the management and prevention of biological invasions. Biodiversity and Conservation 34, 2247-2257 (2025). https://doi.org:10.1007/s10531-025-03058-1
- Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat Ecol Evol 8, 1216-1223 (2024). https://doi.org:10.1038/s41559-024-02412-w
- Schwindt, E. et al. Overwhelming evidence galvanizes a global consensus on the need for action against Invasive Alien Species. Biological Invasions 26, 621-626 (2023). https://doi.org:10.1007/s10530-023-03209-x
- Vicente, J. R. et al. Existing indicators do not adequately monitor progress toward meeting invasive alien species targets. Conservation Letters 15 (2022). https://doi.org:10.1111/conl.12918
History
- Mairal, M. et al. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub-Antarctic. Mol Ecol 31, 1649-1665 (2022). https://doi.org:10.1111/mec.16045
- Mairal, M. et al. Multiple introductions, polyploidy and mixed reproductive strategies are linked to genetic diversity and structure in the most widespread invasive plant across Southern Ocean archipelagos. Mol Ecol 32, 756-771 (2023). https://doi.org:10.1111/mec.16809
Databases
- Leihy, R. I., Peake, L., Clarke, D. A., Chown, S. L. & McGeoch, M. A. Introduced and invasive alien species of Antarctica and the Southern Ocean Islands. Sci Data 10, 200 (2023). https://doi.org:10.1038/s41597-023-02113-2
- Pagad, S. et al. Country Compendium of the Global Register of Introduced and Invasive Species. Sci Data 9, 391 (2022). https://doi.org:10.1038/s41597-022-01514-z
Traits
- Chown, S. L. et al. Indigenous and introduced Collembola differ in desiccation resistance but not its plasticity in response to temperature. Curr Res Insect Sci 3, 100051 (2023). https://doi.org:10.1016/j.cris.2022.100051
- Chown, S. L. & McGeoch, M. A. Functional Trait Variation Along Animal Invasion Pathways. Annual Review of Ecology, Evolution, and Systematics 54, 151-170 (2023). https://doi.org:10.1146/annurev-ecolsys-102220-013423
Detections
- Clarke, L. J. et al. An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic. Management of Biological Invasions 14, 379–402 (2023). https://doi.org/10.3391/mbi.2023.14.3.01
- Onley, I. R., Houghton, M. J., Liu, W. P. A. & Shaw, J. First record of the invasive springtail Hypogastrura viatica occurring synanthropically in East Antarctica. Biological Invasions 27 (2025). https://doi.org:10.1007/s10530-024-03525-w
- Parvizi, E., McGaughran, A. & Stevens, M. I. Tracking the origins of the introduced terrestrial amphipod, Puhuruhuru patersoni, on sub-Antarctic Macquarie Island. New Zealand Journal of Zoology 51, 77-87 (2023). https://doi.org:10.1080/03014223.2023.2224580
Impacts
- Chown, S. L. et al. Invasive species impacts on sub-Antarctic Collembola support the Antarctic climate-diversity-invasion hypothesis. Soil Biology and Biochemistry 166 (2022). https://doi.org:10.1016/j.soilbio.2022.108579
Management
- Carter, Z. T. et al. Evaluating scent detection dogs as a tool to detect pathogenic Phytophthora species. Conservation Science and Practice 5 (2023). https://doi.org:10.1111/csp2.12997
- Leihy, R. I. et al. Antarctic Biosecurity Policy Effectively Manages the Rates of Alien Introductions. Earth’s Future 13 (2025). https://doi.org:10.1029/2024ef005405
- Onley, I. R. et al. Assessing ongoing risks and managing detections of non-native invertebrates in the Antarctic Region. NeoBiota 95, 133-147 (2024). https://doi.org:10.3897/neobiota.95.124706
T2.3 Climate Change Consequences
Theory
- Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecological Monographs 93 (2022). https://doi.org:10.1002/ecm.1553
- Madliger, C. L. et al. The second warning to humanity: contributions and solutions from conservation physiology. Conservation Physiology 9 (2021). https://doi.org:10.1093/conphys/coab038
- Svenning, J. C., McGeoch, M. A., Normand, S., Ordonez, A. & Riede, F. Navigating ecological novelty towards planetary stewardship: challenges and opportunities in biodiversity dynamics in a transforming biosphere. Philos Trans R Soc Lond B Biol Sci 379, 20230008 (2024). https://doi.org:10.1098/rstb.2023.0008
Predictions and methods
- Lee, J. R. et al. Islands in the ice: Potential impacts of habitat transformation on Antarctic biodiversity. Glob Chang Biol 28, 5865-5880 (2022). https://doi.org:10.1111/gcb.16331
- Strugnell, J. M. et al. Emerging biological archives can reveal ecological and climatic change in Antarctica. Glob Chang Biol 28, 6483-6508 (2022). https://doi.org:10.1111/gcb.16356
Tolerances
- Bahndorff, S. et al. Polar ectotherms more vulnerable to warming than expected. Trends in Ecology & Evolution, in press.
- Escribano-Alvarez, P., Pertierra, L. R., Martinez, B., Chown, S. L. & Olalla-Tarraga, M. A. Half a century of thermal tolerance studies in springtails (Collembola): A review of metrics, spatial and temporal trends. Curr Res Insect Sci 2, 100023 (2022). https://doi.org:10.1016/j.cris.2021.100023
- Perera-Castro, A. V., Waterman, M. J., Robinson, S. A. & Flexas, J. Limitations to photosynthesis in bryophytes: certainties and uncertainties regarding methodology. J Exp Bot 73, 4592-4604 (2022). https://doi.org:10.1093/jxb/erac189
- Renault, D. et al. The rising threat of climate change for arthropods from Earth’s cold regions: Taxonomic rather than native status drives species sensitivity. Glob Chang Biol 28, 5914-5927 (2022). https://doi.org:10.1111/gcb.16338
- Yin, H. et al. Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth Res 158, 151-169 (2023). https://doi.org:10.1007/s11120-023-01040-y
Thresholds and extremes
- Dee, L. E. et al. Quantifying disturbance effects on ecosystem services in a changing climate. Nat Ecol Evol 9, 436-447 (2025). https://doi.org:10.1038/s41559-024-02626-y
- Kubiszewski, I. et al. Cascading tipping points of Antarctica and the Southern Ocean. Ambio 54, 642-659 (2025). https://doi.org:10.1007/s13280-024-02101-9
- Lau, S. C. Y. & Strugnell, J. M. Is the Southern Ocean ecosystem primed for change or at the cliff edge? Glob Chang Biol 28, 4493-4494 (2022). https://doi.org:10.1111/gcb.16224
- Mills, E., Clark, G. F., Simpson, M. J., Baird, M. & Adams, M. P. A generalised sigmoid population growth model with energy dependence: Application to quantify the tipping point for Antarctic shallow seabed algae. Environmental Modelling & Software 188 (2025). https://doi.org:10.1016/j.envsoft.2025.106397
- Robinson, S. A. Climate change and extreme events are changing the biology of Polar Regions. Glob Chang Biol 28, 5861-5864 (2022). https://doi.org:10.1111/gcb.16309
Vegetation change
- Ficetola, G. F. et al. The development of terrestrial ecosystems emerging after glacier retreat. Nature 632, 336-342 (2024). https://doi.org:10.1038/s41586-024-07778-2
- Losapio, G., Lee, J.R., Fraser, C.I. et al.Impacts of deglaciation on biodiversity and ecosystem function. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00049-6
- Roland, T. P. et al. Sustained greening of the Antarctic Peninsula observed from satellites. Nature Geoscience 17, 1121-1126 (2024). https://doi.org:10.1038/s41561-024-01564-5
- van der Merwe, S. et al. Repeat photography reveals long‐term climate change impacts on sub‐Antarctic tundra vegetation. Journal of Vegetation Science 35 (2024). https://doi.org:10.1111/jvs.70002
Montreal protocol
- Barnes, P. W. et al. The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment. Glob Chang Biol 27, 5681-5683 (2021). https://doi.org:10.1111/gcb.15841
- Barnes, P. W. et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem Photobiol Sci 21, 275-301 (2022). https://doi.org:10.1007/s43630-022-00176-5
- Barnes, P. W. et al. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 22, 1049-1091 (2023). https://doi.org:10.1007/s43630-023-00376-7
- Jansen, M. A. K. et al. Environmental plastics in the context of UV radiation, climate change, and the Montreal Protocol. Glob Chang Biol 30, e17279 (2024). https://doi.org:10.1111/gcb.17279
- Jansen, M. A. K. et al. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 23, 629-650 (2024). https://doi.org:10.1007/s43630-024-00552-3
- Madronich, S. et al. Continuing benefits of the Montreal Protocol and protection of the stratospheric ozone layer for human health and the environment. Photochem Photobiol Sci 23, 1087-1115 (2024). https://doi.org:10.1007/s43630-024-00577-8
- Neale, P. J. et al. Environmental consequences of interacting effects of changes in stratospheric ozone, ultraviolet radiation, and climate: UNEP Environmental Effects Assessment Panel, Update 2024. Photochem Photobiol Sci 24, 357-392 (2025). https://doi.org:10.1007/s43630-025-00687-x
- Neale, R. E. et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem Photobiol Sci 20, 1-67 (2021). https://doi.org:10.1007/s43630-020-00001-x
- Robinson, S. A. The Antarctic ozone hole, ultraviolet radiation and bushfires. Antarctic Science 35, 61-63 (2023). https://doi.org:10.1017/s0954102023000081
- Robinson, S. A., Revell, L. E., Mackenzie, R. & Ossola, R. Extended ozone depletion and reduced snow and ice cover-Consequences for Antarctic biota. Glob Chang Biol 30, e17283 (2024). https://doi.org:10.1111/gcb.17283
T2.4 Antarctic Life’s Energy Budget
Biogeography
- Lebre, P. H. et al. Expanding Antarctic biogeography: microbial ecology of Antarctic island soils. Ecography 2023 (2023). https://doi.org:10.1111/ecog.06568
- Ni, G. et al. Functional basis of primary succession: Traits of the pioneer microbes. Environ Microbiol 25, 171-176 (2023). https://doi.org:10.1111/1462-2920.16266
- Tytgat, B. et al. Polar lake microbiomes have distinct evolutionary histories. Science Advances 9, eade7130 (2023). https://doi.org/10.1126/sciadv.ade7130
- Varliero, G. et al. Biogeographic survey of soil bacterial communities across Antarctica. Microbiome 12, 9 (2024). https://doi.org:10.1186/s40168-023-01719-3
- Varliero, G. et al. The use of different 16S rRNA gene variable regions in biogeographical studies. Environ Microbiol Rep 15, 216-228 (2023). https://doi.org:10.1111/1758-2229.13145
- Wood, J. L. et al. Rethinking CSR theory to incorporate microbial metabolic diversity and foraging traits. ISME J 17, 1793-1797 (2023). https://doi.org:10.1038/s41396-023-01486-x
Chemosynthesis
- Alexander, L. T. et al. Protein target highlights in CASP15: Analysis of models by structure providers. Proteins 91, 1571-1599 (2023). https://doi.org:10.1002/prot.26545
- Greening, C. et al. Minimal and hybrid hydrogenases are active from archaea. Cell 187, 3357-3372 e3319 (2024). https://doi.org:10.1016/j.cell.2024.05.032
- Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 20, 513-528 (2022). https://doi.org:10.1038/s41579-022-00724-x
- Greening, C., Islam, Z. F. & Bay, S. K. Hydrogen is a major lifeline for aerobic bacteria. Trends Microbiol 30, 330-337 (2022). https://doi.org:10.1016/j.tim.2021.08.004
- Greening, C., Kropp, A., Vincent, K. & Grinter, R. Developing high-affinity, oxygen-insensitive [NiFe]-hydrogenases as biocatalysts for energy conversion. Biochem Soc Trans 51, 1921-1933 (2023). https://doi.org:10.1042/BST20230120
- Grinter, R. et al. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 615, 541-547 (2023). https://doi.org:10.1038/s41586-023-05781-7
- Kropp, A. et al. Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria. Nat Chem Biol (2025). https://doi.org:10.1038/s41589-025-01836-0
- Lappan, R. et al. Molecular hydrogen in seawater supports growth of diverse marine bacteria. Nat Microbiol 8, 581-595 (2023). https://doi.org:10.1038/s41564-023-01322-0
- Martinez-Perez, C. et al. Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nat Commun 13, 117 (2022). https://doi.org:10.1038/s41467-021-27769-5
- Ni, G. et al. Nitrification in acidic and alkaline environments. Essays Biochem 67, 753-768 (2023). https://doi.org:10.1042/EBC20220194
- Ortiz, M. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci U S A 118 (2021). https://doi.org:10.1073/pnas.2025322118
- Ricci, F. & Greening, C. Chemosynthesis: a neglected foundation of marine ecology and biogeochemistry. Trends Microbiol 32, 631-639 (2024). https://doi.org:10.1016/j.tim.2023.11.013
- Valentin-Alvarado, L. E. et al. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat Commun 15, 6384 (2024). https://doi.org:10.1038/s41467-024-49872-z
Atmosphere
- Lappan, R. et al. The atmosphere: a transport medium or an active microbial ecosystem? ISME J 18 (2024). https://doi.org:10.1093/ismejo/wrae092
Theme 3 Supporting Environmental Stewardship
T3.1 Conservation Planning
Theory
- Cooke, S. J. et al. One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice. Conserv Physiol 9, coab009 (2021). https://doi.org:10.1093/conphys/coab009
- Lubiana Botelho, L., Jeynes-Smith, C., Vollert, S. A. & Bode, M. Calibrated Ecosystem Models Cannot Predict the Consequences of Conservation Management Decisions. Ecol Lett 28, e70034 (2025). https://doi.org:10.1111/ele.70034
Marine
- Bode, M. et al. Marine reserves contribute half of the larval supply to a coral reef fishery. Science Advances 11, eadt0216 (2025). https://doi.org/10.1126/sciadv.adt0216
- Brooks, C. M. et al. Protect global values of the Southern Ocean ecosystem. Science 378, 477-479. https://doi.org/10.1126/science.add9480
Terrestrial
- Burrows, J. L., Lee, J. R. & Wilson, K. A. Evaluating the conservation impact of Antarctica’s protected areas. Conserv Biol 37, e14059 (2023). https://doi.org:10.1111/cobi.14059
- Lee, J. R., Shaw, J. D., Ropert-Coudert, Y., Terauds, A. & Chown, S. L. Conservation features of the terrestrial Antarctic Peninsula. Ambio 53, 1037-1049 (2024). https://doi.org:10.1007/s13280-024-02009-4
- Phillips, L. M., Leihy, R. I. & Chown, S. L. Improving species-based area protection in Antarctica. Conserv Biol 36, e13885 (2022). https://doi.org:10.1111/cobi.13885
T3.2 Strategic Monitoring Frameworks
- Akinlotan, M. D. et al. Beyond expected values: Making environmental decisions using value of information analysis when measurement outcome matters. Ecological Indicators 160 (2024). https://doi.org:10.1016/j.ecolind.2024.111828
- Holden, M. H. et al. Why shouldn’t I collect more data? Reconciling disagreements between intuition and value of information analyses. Methods in Ecology and Evolution 15, 1580-1592 (2024). https://doi.org:10.1111/2041-210x.14391
- Holden, M. H. et al. Cost-benefit analysis of ecosystem modeling to support fisheries management. J Fish Biol 104, 1667-1674 (2024). https://doi.org:10.1111/jfb.15741
T3.3 Optimal Monitoring
- Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat Ecol Evol 7, 1947-1952 (2023). https://doi.org:10.1038/s41559-023-02171-0
- Leadley, P. et al. Achieving global biodiversity goals by 2050 requires urgent and integrated actions. One Earth 5, 597-603 (2022). https://doi.org:10.1016/j.oneear.2022.05.009
- Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol 20, e3001921 (2022). https://doi.org:10.1371/journal.pbio.3001921
T3.4 Visualising Geopolitics
ATS functioning
- Chown, S. L. et al. Science advice for international governance – An evidence-based perspective on the role of SCAR in the Antarctic Treaty System. Marine Policy 163 (2024). https://doi.org:10.1016/j.marpol.2024.106143
- Gardiner, N. B., Gilbert, N., Liggett, D. & Bode, M. Measuring the performance of Antarctic Treaty decision-making. Conserv Biol 39, e14349 (2025). https://doi.org:10.1111/cobi.14349
Ecosystem services
- Senigaglia, V. et al. Managing tourism in Antarctica: impacts, forecasts, and suitable economic instruments. Journal of Sustainable Tourism, 1-21 (2025). https://doi.org:10.1080/09669582.2025.2488958
- Stoeckl, N. et al. Governance challenges to protect globally important ecosystem services of the Antarctic and Southern Ocean. ICES Journal of Marine Science 82 (2025). https://doi.org:10.1093/icesjms/fsae163
- Stoeckl, N. et al. The value of Antarctic and Southern Ocean ecosystem services. Nature Reviews Earth & Environment 5, 153-155 (2024). https://doi.org:10.1038/s43017-024-00523-3
Theme 4 Integration
T4.1 Quantifying Uncertainty
- Gopalan, G., Zammit-Mangion, A. & McCormack, F. in Statistical Modeling Using Bayesian Latent Gaussian Models Chapter 2, 81-107 (2023). https://link.springer.com/book/10.1007/978-3-031-39791-2
- Vu, B. A., Gunawan, D. & Zammit-Mangion, A. R-VGAL: a sequential variational Bayes algorithm for generalised linear mixed models. Statistics and Computing 34 (2024). https://doi.org:10.1007/s11222-024-10422-8
T4.2 Sensing Platform Technology
- Debnath, D., Vanegas, F., Sandino, J., Hawary, A. F. & Gonzalez, F. A Review of UAV Path-Planning Algorithms and Obstacle Avoidance Methods for Remote Sensing Applications. Remote Sensing 16 (2024). https://doi.org:10.3390/rs16214019
- Galvez-Serna, J. et al. UAV4PE: An Open-Source Framework to Plan UAV Autonomous Missions for Planetary Exploration. Drones 6 (2022). https://doi.org:10.3390/drones6120391
- Lockhart, K. et al. Unmanned Aerial Vehicles for Real-Time Vegetation Monitoring in Antarctica: A Review. Remote Sensing 17 (2025). https://doi.org:10.3390/rs17020304
- Raniga, D. et al. Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI. Sensors (Basel) 24 (2024). https://doi.org:10.3390/s24041063
- Sandino, J. et al. A Green Fingerprint of Antarctica: Drones, Hyperspectral Imaging, and Machine Learning for Moss and Lichen Classification. Remote Sensing 15 (2023). https://doi.org:10.3390/rs15245658
- Turner, D. et al. Mapping water content in drying Antarctic moss communities using UAS‐borne SWIR imaging spectroscopy. Remote Sensing in Ecology and Conservation 10, 296-311 (2023). https://doi.org:10.1002/rse2.371
T4.3 Rapid Information Deployment
ATS
- Hughes, K. A., Lowther, A., Gilbert, N., Waluda, C. M. & Lee, J. R. Communicating the best available science to inform Antarctic policy and management: a practical introduction for researchers. Antarctic Science 35, 438-472 (2023). https://doi.org:10.1017/s095410202300024x
- Hughes, K. A. et al. Ant-ICON – ‘Integrated Science to Inform Antarctic and Southern Ocean Conservation’: a new SCAR Scientific Research Programme. Antarctic Science 34, 446-455 (2022). https://doi.org:10.1017/s0954102022000402
SDGs
- Lappan, R. et al. Towards integrated cross-sectoral surveillance of pathogens and antimicrobial resistance: Needs, approaches, and considerations for linking surveillance to action. Environ Int 192, 109046 (2024). https://doi.org:10.1016/j.envint.2024.109046
UNFCCC
- Smith, P. et al. Essential outcomes for COP26. Glob Chang Biol 28, 1-3 (2022). https://doi.org:10.1111/gcb.15926
T5 Workforce Topic Flexibility
Bangaladesh
- Mondol, M. A. H., Zhu, X., Dunkerley, D. & Henley, B. J. Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh. Agricultural Water Management 269 (2022). https://doi.org:10.1016/j.agwat.2022.107695
- Mondol, M. A. H., Zhu, X., Dunkerley, D. & Henley, B. J. Living with technological drought: Experience of smallholding farmers of Bangladesh. Environmental Development 50 (2024). https://doi.org:10.1016/j.envdev.2024.100985
Birds
- Barreto, E. et al. Macroevolution of the plant-hummingbird pollination system. Biol Rev Camb Philos Soc 99, 1831-1847 (2024). https://doi.org:10.1111/brv.13094
- Martins, L. P. et al. Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions. Nat Commun 13, 6943 (2022). https://doi.org:10.1038/s41467-022-34355-w
- Martins, L. P. et al. Birds optimize fruit size consumed near their geographic range limits. Science 385, 331–336 (2024). https://doi.org/10.1126/science.adj1856
Microbes
- Islam, Z. F., Greening, C. & Hu, H. W. Microbial hydrogen cycling in agricultural systems – plant beneficial or detrimental? Microb Biotechnol 16, 1623-1628 (2023). https://doi.org:10.1111/1751-7915.14300
- Li, H. & Greening, C. Termite-engineered microbial communities of termite nest structures: a new dimension to the extended phenotype. FEMS Microbiol Rev 46 (2022). https://doi.org:10.1093/femsre/fuac034
Miscellaneous
Hearn, L. R., Stevens, M. I. & Schwarz, M. P. The presence of a guard vicariously drives split sex ratios in a facultatively social bee. Biol Lett 19, 20220528 (2023). https://doi.org:10.1098/rsbl.2022.0528
Dehling, D. M. & Dehling, J. M. Elevated alpha diversity in disturbed sites obscures regional decline and homogenization of amphibian taxonomic, functional and phylogenetic diversity. Sci Rep 13, 1710 (2023). https://doi.org:10.1038/s41598-023-27946-0